March 29, 2006 Duration: 90 mim

The use of any type of calculator is not allowed. Turn off your mobile phone or pager

- 1. Evaluate the limit, if it exists, or explain why the limit does not exist.
- (3 points)

$$\lim_{x\to 0} (\sin x) \sqrt{1+\frac{1}{x^2}}$$

2. Find and classify the points of discontinuity, if any, for the function $f(x) = \frac{(2x+3)(x^2-4)}{2x^2+3x-2}$.

(4 points)

3. Find constants A and B so that the function f(x) given below is continuous everywhere.

(4 points)

$$f(x) = \begin{cases} Ax^2 + B & , x < -1 \\ -x + 2B & , -1 \le x \le 0 \end{cases}$$

$$A = \begin{cases} A \frac{\sin 2x}{x} + B & , x > 0 \end{cases}$$

4. Find the x-coordinates of the points on the graph of $f(x) = \frac{x+1}{2x^2-x+1}$ at which the tangent line is horizontal.

(3 points)

5. (a) State the Intermediate Value Theorem.

(1 point)

- (b) Given $f(x) = x^2 + x \cos^2 x 1$. Use the intermediate value theorem to show that there is a real number c between $-\frac{\pi}{2}$ and 0 such that f'(c) = 0. (3 points)
- 6. Find $\frac{dy}{dx}$ if $y = (u^2 + u + 1)^2$ and $u = \sqrt[3]{x \sec x + 1}$. (3 points)
- 7. Given $f(x) = \begin{cases} x^2 x + 1, & x < 1 \\ x^3, & 1 \le x. \end{cases}$

Find f'(-1) and f'(1) if they exist or explain why, if any of them does not exist. (4 points)